Yong Zhu


Life Sciences & Biotechnology Building 2419

Zhu Lab


  • Postdoctoral fellow, in Comparative & Molecular Endocrinology & Protein Biochemistry, Marine Science Institute, University of Texas at Austin, Port Aransas, Texas 1993-2001
  • Postdoctoral fellow, in Biotechnology & Protein Biochemistry, Central Research Institute, Maruha Co, Tsukuba, Japan, 1991-1992
  • Ph.D., in Comparative Endocrinology at University of Tokyo, Tokyo, Japan 1991.
  • M.Sc., in Reproductive & Comparative Physiology, University of Tokyo, Tokyo, Japan 1988.
  • B.Sc., in Marine Biology, Xiamen University, Xiamen, China 1984.

Research Interests

  1. The Nongenomic Signaling Mechanisms of a Novel GPCR Like Membrane Progestin Receptors and Their Interactions with Classic Progestin Receptor:Steroid hormones and their receptors are involved in various biological processes of cells such as cell survival, proliferation, metabolism, development, immunological and sexual responses , and disease treatment including control of cancer progress. The effects of steroids have been well defined as genomic and nongenomic in order to differentiate non-transcriptional steroid activities (non-genomic) from the transcriptional steroid activities (genomic). However, the reports of these signaling mechanisms and identities of the receptor responsible for the nongenomic actions of steroids are still very controversial, despite intensive investigations over past three decades. We have strong evidence indicate that these nongenomic progestin actions are initiated by a novel class of GPCR-like membrane progestin receptors (mPRs) that I have been cloned and characterized few years ago. The long-term goal of my research is to elucidate the functions and signaling mechanisms of the mPRs and their interactions with classic progestin receptors, and develop applications in medicine, agriculture and aquiculture.
  2. Physiological Roles and Signaling Mechanisms of the Members of Growth Hormone and Prolactin Superfamily during Early Development:The growth hormone and prolactin superfamily, which includes the mammalian placental lactogen and somatolactin in teleost, are important in hundreds of different physiological processes. Despite extensive research, we know very little about the roles of growth hormone and prolactin during early embryonic development. The current central dogma states that neither growth hormone nor prolactin has any functions for normal development based on experimentation on anencephalic fetuses, decapitated, or knockout mammalian models. Studies from my and other laboratories have challenged the dogma. Recently, I have demonstrated that prolactin is an important regulator for the normal development of the eyes, brain, melanophores and body size in zebrafish (Zhu et al., 2007). Furthermore, my studies suggest that prolactin functions in embryos by acting as a survival factor during zebrafish embryogenesis and probably many additional functions still yet undiscovered. For the first time, prolactin was demonstrated to be functional and important for the development of several organs/tissues during embryogenesis in a vertebrate species. The novel results, therefore, requires further investigation into the specific molecular mechanisms of actions for prolactin in embryonic development. My short-term goal is to determine physiological mechanisms, signal pathways and genes controlled by prolactin in early embryonic development. My long-term goals are: 1) establish physiological functions and molecular mechanisms of the prolactin superfamily during early development; 2) contribute to the development of applications in aquaculture and agriculture, and treatments in human diseases. Understanding prolactin-regulated developmental processes and signaling molecules may facilitate the development of therapeutic protocols and reagents that can be used to control proper development and attenuate disease associated with abnormal development of organs/tissues.